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Bimodal oscillations in nephron autoregulation
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The individual functional unit of the kidney~the nephron! displays oscillations in its pressure and flow
regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent
arteriole, and slower oscillations arising from a delay in the tubuloglomerular feedback. We investigate the
intra- and internephron entrainment of the two time scales. In addition to full synchronization, both wavelet
analyses of experimental data and numerical simulations reveal a partial entrainment in which neighboring
nephrons attain a state of chaotic synchronization with respect to their slow dynamics, but the fast dynamics
remain desynchronized.
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I. INTRODUCTION

The concept of homeostasis@1#, i.e., the ability of the
body to maintain a nearly constant internal milieu desp
changes in the external conditions, plays an essential ro
description of physiological control systems.

It is sometimes assumed that homeostasis implies tha
physiological variables are kept near a stable steady stat
means of effective feedback regulation. While this may
the case in certain situations, biological systems in gen
should be considered as open dissipative systems tha
maintained under far-from-equilibrium conditions@2#. Regu-
lar and irregular oscillations associated with various forms
instability are common features of behavior that can be
served during normal functioning or arise in connection w
particular states of disease@3#.

Hormonal control systems, for instance, often show p
sating dynamics with insulin, testosterone, growth hormo
and several other hormones being released in pulses at 1
intervals @4#. The release of insulin also displays a mo
rapid oscillatory pattern with periods in the 8–15 min rang
These oscillations, which are most readily observed in
portal vein between the pancreas and the liver, may be a
ciated with oscillations of the intracellular Ca11 concentra-
tion in the pancreaticb cells @5#. The b cells also exhibit a
much faster form of bursting dynamics, with a rapid spiki
behavior of their membrane potentials interrupted by sil
periods@6#. Similar dynamics, related to changes in the ion
currents that cross the cell membrane, are found in the
sponse of certain sensory nerve cells@7#.

The kidneys play an important role in regulating the blo
pressure and maintaining a proper environment for the c
of the body. At the same time, to protect its function agai
variations in the arterial blood pressure, the individual fun
tional unit of the kidney~the nephron! has a feedback
mechanism~the so-called tubuloglomerular feedback! that
regulates the incoming blood flow depending on the Na
concentration of the fluid that leaves the nephron. Exp
ments by Leyssac and Holstein-Rathlou@8,9# have demon-
strated that this feedback regulation can become unstable
generate self-sustained oscillations in the proximal intratu
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lar pressure with a typical period of 30–40 s. With differe
amplitudes and phases the same oscillations are manife
the distal intratubular pressure and in the chloride concen
tion near the terminal part of the loop of Henle@10#. While
for normal rats the oscillations have the appearance of a l
cycle with a sharply peaked power spectrum@Fig. 1~a!#,
highly irregular oscillations, displaying a broadband spec
distribution with significant subharmonic components, a
observed for spontaneously hypertensive rats@Fig. 1~b!# @8#.
Different forms of entrainment between the tubular press
variations in adjacent nephrons were described in two rec
publications@11,12#. Observation of both in-phase and a
tiphase synchronization was reported for the regular pres
oscillations in normal rats while spontaneously hypertens
rats revealed signs of chaotic phase synchronization.

FIG. 1. Regular tubular pressure oscillations from a normot
sive rat~a! and irregular pressure variations from a spontaneou
hypertensive rat~b!.
©2002 The American Physical Society09-1
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Entrainment phenomena of this type are of considera
interest from a physiological point of view. It is known, fo
instance, that epileptic seizures are related to the synchr
zation of larger groups of cells in the brain@13#. For the
kidney, the aggregate response of the ensemble of neph
is expected to depend on their state of synchronization. If
nephrons operate in unison, a clear and immediate resp
is expected to changes, for instance, in the arterial press
Without synchronization, on the other hand, a slower a
less pronounced response is likely to occur.

While entrainment of single-mode deterministic or s
chastic oscillations is well understood, the dynamics of s
tems with several oscillatory modes is less studied. Liv
systems often exhibit oscillations with different time scal
The thalamocortical relay neurons, for instance, can gene
either spindle or delta oscillations@14# and Neiman and Rus
sell @15# have recently found that the electroreceptors
paddlefish can be biperiodic. In the present paper we
scribe the individual nephron as a two-mode oscillator de
onstrating relatively fast oscillations associated with
myogenic regulation of the arteriolar diameter and slow
oscillations related to the delay in tubuloglomerular fee
back. We study numerically as well as experimentally
entrainment between these time scales both within the i
vidual nephrons and between neighboring nephrons.

II. NEPHRON AUTOREGULATION

A. Wavelet analysis

Signals generated by living systems are typically nons
tionary and inhomogeneous, and processing of such sig
by means of conventional techniques such as Fourier an
sis can lead to problems with respect to the interpretation
the results obtained. Among the various approaches de
oped to study nonstationary data, wavelet analysis is p
ably the most popular@16#. In particular, this method give
us the possibility of investigating the temporal evolution
signals with different rhythmic components.

The wavelet transform of a signalx(t) is performed as
follows:

Tc@x#~a,b!5
1

Aa
E

2`

`

x~ t !c* S t2b

a Ddt, ~1!

wherec is a ‘‘mother’’ function that in general can have a
arbitrary shape provided it is solitonlike with zero averag
Tc@x#(a,b) are the wavelet coefficients,a being a time scal-
ing andb a time displacement parameter. In the analysis
various rhythmic contributions, the so-calledMorlet wavelet
is often applied:

c~t!5exp~ jk0t!expF2
t2

2 G . ~2!

In the present study we shall use this function withk052p
andt5(t2b)/a.

In addition to the wavelet transform coefficien
Tc@x#(a,b) we can estimate the energy densityEc@x#
3(a,b)5uTc@x#(a,b)u2. The result there is a three
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dimensional surfaceEc@x#(a,b) or Ec@x#( f ,b), wheref is
the frequency (f 51/a). Sections of this surface at fixed tim
momentsb5t0 correspond to the local energy spectrum.
simplify the visualization of the time-scale spectru
Ec@x#( f ,b) we can consider the dynamics of only the loc
maxima ofEc@x#( f ,t0), i.e., the peaks of the local spectr
Figure 2 shows the different components detected in the t
series of Fig. 1. Inspection of the figure reveals that the s
oscillations, whether they are periodic or chaotic, maintai
nearly constant frequency through the observation time.
fast oscillations, on the other hand, fluctuate around so
average value. This may be related to a complex modula
of the fast oscillations by the slow dynamics or to the infl
ence of noise~since the fast oscillations are small in amp
tude, they are more sensitive to fluctuations!. However, this
picture does not give information about the dominant sp
tral components. This information can be obtained, for
ample, from ascalogram, i.e., a time averaged power spe
trum, which is an analog to the Fourier power spectru
Such a scalogram is illustrated in Fig. 3 where a we
pronounced peak around 0.03 Hz, corresponding to the s
mode mediated by tubuloglomerular feedback mode, is
tinguishable. The other peak at 0.15–0.2 Hz derives from
fast myogenic dynamics. It is interesting to note how clea
these oscillations can be detected from the tubular pres
variations. Since both the above frequency components
of physiological interest we extract them from the origin
wavelet transformation for further analysis of their coheren
properties. Figure 4 displays the relation between fast
slow oscillations in a single nephron. For the periodic osc
lations observed for normotensive rats@Fig. 4~a!#, the fast
and slow components adjusted their periods in accorda
with one another to maintain a 1:4 entrainment during

FIG. 2. Wavelet analysis of the two time series presented
Fig. 1.
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BIMODAL OSCILLATIONS IN NEPHRON AUTOREGULATION PHYSICAL REVIEW E66, 061909 ~2002!
observation time. For the chaotic oscillations observed
hypertensive rats@Fig. 4~b!#, the ratio changes more ran
domly in time.

B. Model

The functional unit of the kidney may be considered a
filtration device with an internal feedback control that reg

FIG. 3. Power spectrum obtained from the wavelet analysis
the two time series presented in Fig. 1. Two peaks, representing
fast myogenic oscillations and the slower tubuloglomerular osc
tions, are well distinguished.

FIG. 4. Ratio of the internal time scales for a normotensive
~a! and for a hypertensive rat~b!. Note the 1:4 synchronization fo
the normotensive rat.
06190
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lates the blood flow. The incoming blood flow passes throu
the afferent arteriole to the capillary system of the glome
lus where the filtration of water, salts, and small molecu
into the proximal tubule takes place. As it leaves this tubu
the filtrate travels a significant distance through the loop
Henle where a variety of passive~osmotically driven! and
active ~enzymatically controlled! reabsorption and excretio
processes take place. Before it leaves the tubular system
fluid passes a group of specialized cells~the macula densa
cells! that respond to variations in the NaCl concentration
eliciting a signal that influences the diameter of the affer
arteriole, providing the so-called tubuloglomerular feedba
@17#. This is a negative feedback mechanism that serve
maintain the working conditions of the nephron relative
constant in spite of variations in the arterial blood pressu
Over the years significant efforts have been made to dev
mathematical models that can account for the observed r
lar and irregular pressure variations and describe the ph
ological processes that occur along the tubular system@18–
22#. A particular aspect of this research has been to show
the transition from regular oscillations to irregular variatio
in the tubular pressure can be explained in terms of par
eter changes within the framework of well-established phy
ological mechanisms. A review of the work may be found
the recent contribution by Andersenet al. @23#. Here, a
model of nephron-nephron interaction was developed an
was shown that this model can produce a variety of differ
synchronization phenomena.

Autoregulation of the pressures and flows in the in
vidual nephron may be described by the following mod
@21,22#:

Ṗt5
1

Ctub
$F f~Pt ,r !2Freab2~Pt2Pd!/RH%,

ṙ 5v r ,

v̇ r5
1

v
$Pav~Pt ,r !2Peq„r ,C~X3 ,a!,T…2vdv r%,

~3!

Ẋ15
1

RH
~Pt2Pd!2

3

T
X1 ,

Ẋ25
3

T
~X12X2!,

Ẋ35
3

T
~X22X3!.

The first equation represents the pressure variations in
proximal tubule in terms of the in- and outgoing fluid flow
Here,F f is the single-nephron glomerular filtration rate a
Ctub is the elastic compliance of the tubule. The flow into t
loop of Henle is determined by the difference (Pt2Pd) be-
tween the proximal and the distal tubular pressures and
the flow resistanceRH . The reabsorption in the proxima
tubuleFreab is assumed to be constant.
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The following two equations describe the dynamics as
ciated with the flow control in the afferent arteriole. Herer
represents the radius of the active part of the vessel andv r is
its rate of increase.d is a characteristic time constant descr
ing the damping of the oscillations,v is a measure of the
mass relative to the elastic compliance of the arteriolar w
andPav denotes the average pressure in the active part o
arteriole.Peq is the value of this pressure for which the a
teriole is in equilibrium with its present radius and muscu
activationC. The expressions forF f , Pav , andPeq involve
a number of algebraic equations that must be solved a
with the integration of Eq.~3!.

The remaining equations in the single-nephron model
scribe the delayT in the TGF regulation. This delay arise
both from the transit time through the loop of Henle a
from the cascaded enzymatic processes between the m
densa cells and the smooth muscle cells that control the
tractions of the afferent arteriole. The feedback delay, wh
typically assumes a value of 12–18 s, will be considere
bifurcation parameter in our analysis. Another important
rameter is the strengtha of the feedback regulation. Thi
parameter takes a value of about 12 for normotensive r
increasing to about 18 for hypertensive rats@24#. For a more
detailed explanation of the model and the parameters~see
Ref. @23#!.

Both experimental investigations and our simulations@22#
reveal one of the most important features of the sing
nephron model, namely, the presence of two different ti
scales in the pressure and flow variations. Considering
model equations~3! we can identify the two time scales i
terms of~i! a low-frequency~TGF-mediated! oscillation with
a periodTh>2.2T arising from the delay in the tubuloglom
erular feedback, and~ii ! somewhat faster oscillations with
period Tv'Th/5 associated with the inherent myogenic a
justment.

To determineTh andTv in our numerical simulations we
have used the mean return times of the trajectory to ap
priately chosen Poincare´ sections

Tv5^Tretu v̇r50& and Th5^TretuẊ250&. ~4!

From these return times it is easy to calculate the in
nephron rotation number~i.e., the rotation number associate
with the two-mode behavior of the individual nephron!

r vh5Tv /Th . ~5!

This measure will be used to characterize the various fo
of frequency locking between the two modes. With varyi
feedback delayT and varying slopea of the open loop feed-
back curve, Fig. 5 shows how the two oscillatory modes
adjust their dynamics and attain states with different ratio
relations (n:m) between the periods. The regions of hig
resonances~1:4, 1:5, and 1:6! are seen to exist in the phys
ologically interesting range of the delay timeT
P@12s,20s#.

While the transitions between the different locking r
gimes always involve bifurcations, bifurcations may also o
cur within the individual regime. A period-doubling trans
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tion, for instance, does not necessarily changer vh , and the
intranephron rotation number may remain constant throug
complete period-doubling cascade and into the chaotic
gime. This is illustrated in Fig. 6 where we have plottedr vh
as a function of the feedback gaina for different time delays
T2513.5 s ~black circles! and T515.0 s ~open circles!.
Phase projections (Pt ,r ) from the various regimes ar
shown as insets. Inspection of the figure clearly shows
r vh remains constant under the transition from regular
oscillations ~black circles for a525.0) to chaos~for a
528.0) ~see insets 1 and 2!. With further evolution of the
chaotic attractor~inset 3!, the 1:4 mode locking is destroyed
In the interval arounda531.5 we observe 2:9 mode locking
A similar transition is observed forT515 s ~open circles!.
Periodic 1:5 oscillations (a527.0) evolve into a chaotic at
tractor (a528.5), but the rotation number maintains a co
stant value. For fully developed chaos, the 1:5 locking ag
breaks down.

We conclude that, in addition to being regular or chao
the self-sustained pressure variations in the individual ne
ron can be classified as being synchronous or asynchro
with respect to the ratio between the two time scales t
characterize the fast~arteriolar! mode and the slow~TGF-
mediated! mode, respectively. As we shall see, this comple

FIG. 5. Two-mode oscillatory behavior in the single-nephr
model. Black colored regions correspond to a chaotic solution.

FIG. 6. Internal rotation number as a function of the parame
a calculated from the single-nephron model. Insets represent p
projections of typical regimes.
9-4
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BIMODAL OSCILLATIONS IN NEPHRON AUTOREGULATION PHYSICAL REVIEW E66, 061909 ~2002!
ity in behavior may play an essential role in the synchro
zation between a pair of interacting nephrons.

III. ENTRAINMENT OF OSCILLATORY MODES FOR
INTERACTING NEPHRONS

A. Experimental results

Using anatomical criteria, neighboring nephrons havin
high likelihood of deriving their afferent arterioles from th
same interlobular artery were identified@25#. In these neph-
rons 29 out of 33 pairs~i.e., 80%! were found to have syn
chronized oscillations. In contrast, nephron pairs not fulfi
ing these criteria only showed synchronous oscillations
one case out of 23 investigated pairs~i.e., 4%!. This obser-
vation shows that synchronized oscillations are preferenti
found in nephrons originating from the same interlobular
tery. Figure 7 displays the tubular pressure variations in p
of neighboring nephrons for a normotensive rat~a! and for
hypertensive rats~b!–~d!. Oscillations presented in Figs
7~b!, 7~c!, and 7~d! are significantly more irregular than th
oscillations displayed in~a!. One can visually observe a ce
tain degree of synchronization between the interacting ne
rons. It is difficult, though, to separately estimate the deg
of adjustment for the myogenic oscillations and for the TG
mediated oscillations without special tools.

To study multimode interactive dynamics in coupled s
tems we propose to use the wavelet based coherence me
GD ~in analogy with the classical coherence function!. Let
Ec@xx#( f ,t) andEc@yy#( f ,t) be the energy densities of sig
nalsx(t) andy(t). Let also in some range of frequenciesD
each of the processesx(t) andy(t) have a clearly expresse
rhythm~e.g., the range of slow or fast oscillations for the tw
nephrons!. In this case synchronization means that the co
sponding frequencies forx(t) andy(t) will be locked~coin-
cide!. Such a situation corresponds to the valueGD51 for
the function

GD
2 ~ t !5

max
f PD

†Ec@xy#~ f ,t !‡2

max
f PD

†Ec@xx#~ f ,t !‡max
f PD

†Ec@yy#~ f ,t !‡
. ~6!

FIG. 7. Examples of the tubular pressure variation that one
observe in adjacent nephrons~a! for normotensive and~b!–~d! for
hypertensive rats.
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Here, Ec@xy#( f ,t) is the mutual energy densit
Ec@xy#( f ,t)5uTc@xy#( f ,t)Tc* @yx#( f ,t)u. GD(t) is a func-
tion of time that allows us to follow the evolution of th
interactive dynamics of the two processes in the chosen
quency rangeD. The more synchronous the rhythms of the
processes are, the closerGD(t) will be to 1.

Figures 8 and 9 demonstrate different degrees of co
ence for the modes considered. For periodic oscillations~a!,
both the slow and fast modes of the interacting nephrons
perfectly locked during the observation time. For a syst
with complex oscillations subjected to noise one can sp
about a certain degree of synchronization if the periods
locking are significant compared with the characteristic
riod of the oscillations@26#. Fully incoherent behavior with
respect to both oscillatory modes can be observed in~b!. In
many cases we can diagnose synchronization of the s
motions ~c!,~d! for relatively long time intervals where th
frequencies remain almost equal. The fast motions, on

n
FIG. 8. Mutual wavelet analysis for the slow oscillations of t

two time series presented in Fig. 7:~a! synchronous behavior;~b!
nonsynchronous dynamics;~c! and ~d! synchronous behavior bu
during limited time intervals.

FIG. 9. Mutual wavelet analysis for the fast oscillations e
tracted from time series presented in Fig. 7.~a! and ~c! illustrate
synchronous behavior,~b! and ~d! nonsynchronous dynamics.
9-5
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other hand, can demonstrate different coherence prope
between nephrons. The oscillations can be locked du
long periods of time together with the slow oscillations~c!.
We define this type of synchronization as full synchroniz
tion since all time scales of the system are locked. Anot
case~d! is when the fast oscillations are incoherent while t
slow oscillations are synchronized during the time inter
considered. We refer to this phenomenon as partial sync
nization.

B. Simulation results

Neighboring nephrons can influence each other’s blo
supply either through vascularly propagated electrical~or
electrochemical! signals or through a hemodynamic couplin
arising via a direct redistribution of the blood flow betwe
the coupled nephrons. While the hemodynamic coupling
pends mainly on the flow resistances in the arteriolar n
work, the vascularly propagated coupling is associated w
signal transmission between smooth muscle cells. The re
is that only nephrons situated close to one another can in
act via the vascularly propagated coupling. Nephrons s
ated farther apart but sharing a common piece of interlob
artery may interact via the hemodynamic coupling.

In the present work we shall focus our attention on
vascularly propagated coupling, assuming the hemodyna
coupling to be negligible. In the single-nephron model t
equilibrium pressure in the afferent arteriole depends on
current radiusr and on the activation levelC of the smooth
muscles surrounding the arteriole and controlling its dia
eter. The muscular activation arises at the juxtaglomer
apparatus and travels upstream along the afferent arterio
a damped fashion. When it reaches the branching point w
the arteriole from the neighboring nephron, part of the sig
may propagate down that arteriole and start to contribut
its TGF response. The coupling is considered nearly ins
taneous since the time it takes for the vascular signal to re
the other nephron is very small relative to the period of
TGF oscillations. It has been observed@25# that the signal
decreases nearly exponentially as it propagates. Thus on
fractiong5e2 l / l 0,1 of the original activation level reache
the vascular smooth muscles close to macula densa o
neighboring nephron. In the expression for the vascular c
pling parameterg, l is the propagation length of the cou
pling signal, andl 0>500 mm is the characteristic lengt
scale of the exponential decay. In the model, the vascul
propagated coupling is represented by adding a contribu
of the activation level in one nephron to the activation le
in the neighboring nephron:

C1,2* 5C1,21gC2,1, ~7!

with g being the coupling parameter andC1,2 the uncoupled
activation levels of the two nephrons as determined by th
respective Henle flows. In view of the characteristic prop
gation length for the signal and of measured distances
tween neighboring nephrons along the arteriolar networ
typical value ofg is considered to be 0.1–0.2@25#. By virtue
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of the two-mode dynamics of the individual nephron, a nu
ber of interesting results appear.

The individual oscillatory system has two modes that c
be locked with each other. However, an interaction betw
functional units can break their mutual adjustment. It is a
plausible that a coupling can act in different ways on the f
and slow oscillations. For interacting systems we introdu
two rotation numbers as follows:

r v5Tv1 /Tv2 , r h5Th1 /Th2 . ~8!

To provide more information, the variation of the phase d
ference is calculated separately for the slowh and for the fast
v oscillations.

Let us consider the case ofa530.0 corresponding to a
weakly developed chaotic attractor in the individual nephr
The coupling strengthg and delay timeT2 in the second
nephron are varied. Two different chaotic states can be
ognized as asynchronous and synchronous~Fig. 10!. For
asynchronous behavior the rotation numbersr h and r v
change continuously withT2 while inside the synchroniza
tion region two cases can be distinguished. To the left,
rotation numbersr h andr v are both equal to unity since bot
slow and fast oscillations are synchronized. To the rig
(T2.14.2 s), while the slowh mode of the chaotic oscilla
tions remain locked, the fastv-mode drifts randomly. In this
case the synchronization condition is satisfied only for one
oscillatory modes.

IV. CONCLUSIONS

Based on the analysis of experimental results, we sho
that the vascular dynamics and the tubuloglomerular fe
back mechanism are responsible for two time scales ass
ated with a fast and a slow oscillatory mode in the individu
nephron. Both for periodic oscillations observed in norm
tensive rats and for the chaotic oscillations in hypertens
rats the two modes exhibit resonant behavior as well as n
synchronous dynamics.

To investigate different types of internephron mode e
trainment we developed a mutual wavelet transformation
allows us to easily analyze adjustments between differ
time scales from nonstationary data. We observed simu
neous~full ! locking for the slow and fast oscillations both fo

FIG. 10. Full and partial synchronization of fast and slow m
tions (T1513.5 s,a530.0, andg50.06).
9-6
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normotensive and for hypertensive rats. We also identifie
state of partial synchronization where the slow oscillatio
are synchronized while the fast motion demonstrates non
herent behavior. Such a situation is typical for hypertens
rats.

Numerical simulations for coupled nephron models de
onstrate similar behavior. With varying time delay in the t
buloglomerular feedback and varying strength of the vas
J,

s

n

E

-H

D

06190
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lar coupling the experimentally observed forms of synch
nous behavior were recovered.
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